Ce travail en deux volumes donne la preuve de la stabilisation de la formule des traces tordue. Stabiliser la formule des traces tordue est la méthode... > Lire la suite
Plus d'un million de livres disponibles
Retrait gratuit en magasin
Livraison à domicile sous 24h/48h* * si livre disponible en stock, livraison payante
60,30 €
Expédié sous 2 à 4 semaines
ou
À retirer gratuitement en magasin U entre le 27 novembre et le 11 décembre
Ce travail en deux volumes donne la preuve de la stabilisation de la formule des traces tordue. Stabiliser la formule des traces tordue est la méthode la plus puissante connue actuellement pour comprendre l'action naturelle du groupe des points adéliques d'un groupe réductif, tordue par un automorphisme, sur les formes automorphes de carré intégrable de ce groupe. Cette compréhension se fait en réduisant le problème, suivant les idées de Langlands, à des groupes plus petits munis d'un certain nombre de données auxiliaires ; c'est ce que l'on appelle les données endoscopiques. L'analogue non tordu a été résolu pari. Arthur et dans ce livre on suit la stratégie de celui-ci. Publier ce travail sous forme de livre permet de le rendre le plus complet possible. Les auteurs ont repris la théorie de l'endoscopie tordue développée par R. Kottwitz et D. Shelstad et par J : P. labesse. Ils donnent tous les arguments des démonstrations même si nombre d'entre eus se trouvent déjà dans les travaux d'Arthur concernant le cas de la formule des traces non tordue. Ce travail permet de rendre inconditionnelle la classification quel Arthur donnée des formes automorphes de carré intégrable pour les groupes classiques quasi-déployés, c'était pour les auteurs une des principales motivations pour l'écrire. Cette première partie comprend les chapitres préparatoires (I-V).