Menu
Mon panier

En cours de chargement...

Recherche avancée

Lois d'échelle, fractales et ondelettes - Volume 1 (Relié)

  • Hermes Science Publications

  • Paru le : 01/03/2002
Dans de nombreuses sciences, on est habitué à conduire l'étude d'un système, d'un signal, à partir de la recherche d'échelles (d'espaces, de temps)... > Lire la suite
  • Plus d'un million de livres disponibles
  • Retrait gratuit en magasin
  • Livraison à domicile sous 24h/48h*
    * si livre disponible en stock, livraison payante
98,00 €
Expédié sous 3 à 6 jours
  • ou
    À retirer gratuitement en magasin U
    entre le 12 novembre et le 15 novembre
Dans de nombreuses sciences, on est habitué à conduire l'étude d'un système, d'un signal, à partir de la recherche d'échelles (d'espaces, de temps) caractéristiques. On les utilise alors comme références, unités ou étalons servant à exprimer toutes les autres mesures. Le physicien, par exemple, s'appuie sur plusieurs types d'échelles de temps (la période, la taille d'une structure, le taux de croissance d'un transitoire).
Le traiteur du signal, lui, identifie souvent une longueur de corrélation, pour utiliser comme ingrédient essentiel dans l'analyse de données que deux échantillons (ou bloc d'échantillons) séparés de plusieurs longueurs de corrélation peuvent être considérés comme sans liaison statistique. La notion d'invariance d'échelle s'appréhende comme la négation de cette démarche, comme une non-propriété : l'absence d'échelle caractéristique.
En d'autres termes, on ne peut pas identifier dans le système ou le signal étudié des échelles jouant un rôle spécifique : on doit considérer que toutes les échelles interviennent simultanément. C'est cette "non-propriété" que l'on nomme couramment phénomène d'invariance d'échelle, comportement en loi d'échelle ou simplement loi d'échelle, sans chercher à être plus précis, et qui est communément désignée de façon très économique en anglais par scaling.
Un renversement de perspective permet également d'envisager l'invariance d'échelle comme la signature de l'existence d'une organisation forte dans les données ou les systèmes. En physique, par exemple, les propriétés d'invariance et de quantités conservées rendent compte, de façon fondamentale, de la structure des systèmes.

Fiche technique

Paulo Gonçalvès et Jacques Lévy Véhel - Lois d'échelle, fractales et ondelettes - Volume 1.
Lois d'échelle, fractales et ondelettes. Volume 1
98,00 €
Haut de page