Menu
Mon panier

En cours de chargement...

Recherche avancée

Gradient Boosting - Exploitez les arbres de décision pour le Machine Learning (XGBoost, CatBoost, LightGBM) (Broché)

  • ENI (Editions)

  • Paru le : 16/03/2022
Ce livre sur les méthodes de Gradient Boosting est destiné aux étudiants, universitaires, ingénieurs, data scientist qui souhaitent découvrir en... > Lire la suite
  • Plus d'un million de livres disponibles
  • Retrait gratuit en magasin
  • Livraison à domicile sous 24h/48h*
    * si livre disponible en stock, livraison payante
54,00 €
Expédié sous 3 à 6 jours
  • ou
    À retirer gratuitement en magasin U
    entre le 12 novembre et le 15 novembre
Ce livre sur les méthodes de Gradient Boosting est destiné aux étudiants, universitaires, ingénieurs, data scientist qui souhaitent découvrir en profondeur le fonctionnement de cette technique de Machine Learning utilisée pour construire des ensembles d'arbres de décision. Tous les concepts sont illustrés par des exemples de code applicatif. Ils permettent au lecteur de reconstruire from scratch sa propre librairie d'entraînement des méthodes de Gradient Boosting.
En parallèle, le livre présente les bonnes pratiques de la Data Science et apporte au lecteur un solide bagage technique pour construire des modèles de Machine Learning. Après une présentation des principes du Gradient Boosting citant les cas d'application, les avantages et les limites, le lecteur s'imprègne des détails de la théorie mathématique. Une implémentation simple est donnée afin d'en illustrer le fonctionnement.
Le lecteur est ensuite armé pour aborder la mise en application et la configuration de ces méthodes. Préparation des données, entraînement, explication d'un modèle, gestion de l'Hyper Parameter Tuning et utilisation des fonctions objectifs sont couverts en détail ! Les derniers chapitres du livre élargissent le sujet vers l'application du Gradient Boosting pour les séries temporelles, la présentation des bibliothèques emblématiques XGBoost, CatBoost et LightGBM ainsi que sur le concept de modèle multi-résolution.
Des éléments complémentaires sont en téléchargement sur le site www.editions-eni.fr.

Fiche technique

  • Date de parution : 16/03/2022
  • Editeur : ENI (Editions)
  • Collection : Epsilon
  • ISBN : 978-2-409-03402-2
  • EAN : 9782409034022
  • Format : Grand Format
  • Présentation : Broché
  • Nb. de pages : 400 pages
  • Poids : 1.378 Kg
  • Dimensions : 17,8 cm × 21,6 cm × 2,1 cm

À propos de l'auteur

Biographie de Guillaume Saupin

Ingénieur et docteur en informatique, passionné de mathématiques et du langage Lisp, Guillaume Saupin a travaillé une dizaine d'années comme chercheur au Commissariat à l'Energie Atomique avant de rejoindre le monde de l'Intelligence artificielle et des start up. Il a enseigné le Computer Graphics en master à l'Université Paris 12 et à Epitech. Actuellement CTO chez Verteego, il est également auteur de plus d'une vingtaine d'articles pour le Linux Magazine France et publie régulièrement en anglais sur des sujets de Data Science dans la publication en ligne Toward Data Science.
Guillaume Saupin - Gradient Boosting - Exploitez les arbres de décision pour le Machine Learning (XGBoost, CatBoost, LightGBM).
Gradient Boosting. Exploitez les arbres de décision pour...
54,00 €
Haut de page