Cet ouvrage est consacré aux espaces vectoriels normés ou semi-normés, dont les espaces de Banach, Fréchet et Hilbert, avec des développements nouveaux... > Lire la suite
Plus d'un million de livres disponibles
Retrait gratuit en magasin
Livraison à domicile sous 24h/48h* * si livre disponible en stock, livraison payante
139,20 €
Expédié sous 2 à 4 semaines
ou
À retirer gratuitement en magasin U entre le 22 novembre et le 6 décembre
Cet ouvrage est consacré aux espaces vectoriels normés ou semi-normés, dont les espaces de Banach, Fréchet et Hilbert, avec des développements nouveaux sur les espaces de Neumann - c'est-à-dire dans lesquels toute suite de Cauchy converge - et sur les espaces extractables - c'est-à-dire dans lesquels toute suite bornée a une sous-suite faiblement convergente. Il présente les principales propriétés de ces espaces utiles pour la construction des espaces de distributions, de Lebesgue et de Sobolev, à valeurs réelles ou vectorielles, ainsi que pour la résolution d'équations aux dérivées partielles. Dans ce but, le calcul différentiel est étendu aux espaces semi-normés. Espaces de Banach, Fréchet, Hilbert et Neumann privilégie les méthodes simples, les semi-normes, les propriétés séquentielles et bien d'autres encore, afin de rendre ces outils accessibles au plus grand nombre - doctorants, étudiants de troisième cycle, ingénieurs - sans en restreindre la généralité.
Jacques Simon est directeur de recherche émérite au CNRS. Son domaine d'expertise porte sur les équations de Navier-Stokes, et en particulier sur l'optimisation de forme et sur les espaces que ces équations utilisent.