La théorie des ensembles a permis l'unification des mathématiques en servant de socle commun à leurs différentes branches : toutes y plongent désormais leurs racines. Cette organisation est relativement récente, puisque le concept d'ensemble n'est apparu qu'au milieu du XIXe siècle, lorsque des mathématiciens entreprirent de venir à bout de problèmes que la notion d'infini posait depuis l'Antiquité. Après les tâtonnements de Bolzano et à la suite des recherches de Riemann sur le concept d'espace, les véritables bases de la théorie des ensembles furent établies par Cantor et par Dedekind. Au tournant du siècle, la " crise des fondements ", en révélant ses faiblesses, imposa de l'axiomatiser. Une fois cette consolidation réalisée, par Zermelo principalement, la théorie put repartir de l'avant. À suivre le cheminement de pensée qui a présidé à cette élaboration, on entre en quelque sorte dans l'intimité de la notion d'ensemble.