Cet ouvrage est destiné aux étudiants qui disposent déjà d'un bagage de connaissances équivalent à celui acquis après le premier cycle de Mathématiques. Toutefois l'exposé ne suppose presque aucune connaissance préalable.
Son but est de faire connaître, dans un cadre aussi simple que possible, quelques-uns des outils puissants de l'Analyse moderne, et leurs applications.
Les notions de base sont presque toujours présentées sous leur forme générale, après l'étude préalable d'un ou deux exemples destinés à justifier le choix des définitions. C'est ainsi qu'on aborde les espaces topologiques quelconques après une brève étude de la droite réelle ; les espaces métriques ne viennent qu'ensuite, lorsque se posent des questions d'uniformité. De même les espaces vectoriels normés et les espaces de Hilbert ne viennent qu'après une étude des espaces localement convexes, dont l'importance ne cesse de grandir dans l'Analyse moderne et ses applications.
On a pris soin de préciser le champ de validité des théorèmes par des exemples et contre-exemples. Enfin, de nombreux exercices de difficulté variée permettront aux étudiants de vérifier leur bonne compréhension du cours et d'exercer leurs facultés créatrices.